If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2-24t-65=0
a = 5; b = -24; c = -65;
Δ = b2-4ac
Δ = -242-4·5·(-65)
Δ = 1876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1876}=\sqrt{4*469}=\sqrt{4}*\sqrt{469}=2\sqrt{469}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-2\sqrt{469}}{2*5}=\frac{24-2\sqrt{469}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+2\sqrt{469}}{2*5}=\frac{24+2\sqrt{469}}{10} $
| 180-(9x-80)-(3x+1)+(8x-15)=180 | | 0.1(15+2x)=4x(0.05) | | 6/12=y/48 | | 4x^2-2x-1/4=0 | | 33-6x=53 | | 7(6-2a)=5(-a | | 10x+40=280+4x | | 6x+50=98 | | 1/4(16x+24)=24 | | 0.7x-6.1=0.5 | | (y-7)=(6-8y)-7 | | (y-7)=6-8y | | 0.04x+0.18=0.3 | | 7x^-175=0 | | 7+2n=n-1 | | 5n×10=11 | | 2/3(5x+35)-8=12 | | 7x-9=139 | | 8x+10=120-5x | | 0.02x2-0.06x+0.01=0 | | 5y+21=2y | | 3x2−4=−196 | | x+(90-x)+(180-2x)=180 | | 8x+35=-45 | | x(x^2-3x+2)=6000 | | 6x-7+11=180 | | 14−3x=−-4x | | 3/4x-1/2=2/3x+5/6 | | 22=0a | | 0.4(15+6)=1.5(4p+1.6) | | 6÷n=-14 | | 3(7x-1)-2(6x)=24 |